Basis discrepancies for extensions of valued fields
نویسنده
چکیده
Let F be a field complete for a real valuation. It is a standard result in valuation theory that a finite extension of F admits a valuation basis if and only if it is without defect. We show that even otherwise, one can construct bases in which the discrepancy between measuring valuation an element versus on the components in its basis decomposition can be made arbitrarily small. The key step is to verify this for extensions of degree equal to the characteristic by a direct calculation.
منابع مشابه
Graded Transcendental Extensions of Graded Fields
We study transcendency properties for graded field extension and give an application to valued field extensions. 1. Introduction. An important tool to study rings with valuation is the so-called associated graded ring construction: to a valuation ring R, we can associate a ring gr(R) graded by the valuation group. This ring is often easier to study, and one tries to lift properties back from gr...
متن کاملOperator-valued bases on Hilbert spaces
In this paper we develop a natural generalization of Schauder basis theory, we term operator-valued basis or simply ov-basis theory, using operator-algebraic methods. We prove several results for ov-basis concerning duality, orthogonality, biorthogonality and minimality. We prove that the operators of a dual ov-basis are continuous. We also dene the concepts of Bessel, Hilbert ov-basis and obta...
متن کاملFUZZY HYPERVECTOR SPACES OVER VALUED FIELDS
In this note we first redefine the notion of a fuzzy hypervectorspace (see [1]) and then introduce some further concepts of fuzzy hypervectorspaces, such as fuzzy convex and balance fuzzy subsets in fuzzy hypervectorspaces over valued fields. Finally, we briefly discuss on the convex (balanced)hull of a given fuzzy set of a hypervector space.
متن کاملAn Isomorphism Theorem for Henselian Algebraic Extensions of Valued Fields
In general, the value groups and the residue elds do not suuce to classify the algebraic henselian extensions of a valued eld K, up to isomorphism over K. We deene a stronger, yet natural structure which carries information about additive and multiplica-tive congruences in the valued eld, extending the information carried by value groups and residue elds. We discuss the cases where these \mixed...
متن کاملElimination of Ramification I: The Generalized Stability Theorem
In this paper, we consider the defect (also called ramification deficiency) of finite extensions of valued fields. For a valued field (K, v), we will denote its value group by vK and its residue field by K or by Kv. An extension of valued fields is written as (L|K, v), meaning that v is a valuation on L and K is equipped with the restriction of this valuation. Every finite extension L of a valu...
متن کامل